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The scaling ranges of temperature and velocity fluctuations in thermally driven turbulence are
studied by analyzing the various contributions to the equations of motion. The crossover wave
number kg between Bolgiano-Obukhov and Kolmogorov-Obukhov scaling is estimated in terms of
the forcings. By evaluating the thermal and buoyant stirrings and dissipations of Rayleigh-Bénard
convection experiments we find kg much larger than L™, the energy-containing scale, but smaller
than (10n)~?, the viscous scale. For computer simulation of randomly thermal driven turbulence we
find kp of the order of L™!. This might explain why the Bolgiano-Obukhov scaling was observed in
laboratory experiments whereas Kolmogorov-Obukhov scaling was found in computer simulation of

thermally driven turbulence.
PACS number: 47.27.Gs

I. INTRODUCTION

In recent Rayleigh-Bénard experiments [1-4] with un-
usually large Rayleigh numbers (Ra) up to 10'°, the fre-
quency power spectra of the temperature fluctuations
showed a scaling range Py(w) oc w™% with (p near 7/5.
Measurements of the velocity spectrum by photon cor-
relation homodyne spectroscopy [5] give indication of
k2P, (k) o< k=% (¢u ~ 11/5) scaling. These findings are
consistent with the so-called Bolgiano-Obukhov scaling
[6,7], henceforth denoted as BO; see also (8], Sec. 21.7.

Theoretical work gives arguments that under cer-
tain assumptions BO scaling should indeed be expected
[10,11] (cf. also [6-8]). On the other hand, approx-
imate solutions of the Navier-Stokes-Boussinesq equa-
tions definitely give Kolmogorov-Obukhov (KO) scaling
[12,13], i.e.,, (¢ = Cu = 5/3. As was discussed in [13],
an explicit introduction of plume forcing on scales as
small as the boundary layer thickness makes the spec-
tra less steep than for KO. Next, there is even an ar-
gument [14] that BO is inconsistent with global scaling
in Rayleigh-Bénard flow. On the other hand, the first
(and quite recent) numerical solutions of the dynami-
cal equations on two-dimensional and three-dimensional
grids seem to favor BO scaling [15], although it is not
clear if one can draw conclusions from two-dimensional
calculations for Rayleigh-Bénard flow, which is essen-
tially three-dimensional, and although we do not know
if the three-dimensional runs were long enough already
to give reliable spectra. Thus the situation is rather
confusing and deserves efforts to understand the above-
mentioned discrepancies and to give an explanation of
the experimentally measured scaling exponents in terms
of the equations of motion in addition to the work in
[9-11].
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We follow as closely as possible the Boussinesq equa-
tions and analyze the relative importance of their various
terms. A mean-field type of argument is used to express
triple correlations in terms of two-field correlation func-
tions. This is supported by the observation that this pro-
duces a scaling behavior (28) in good agreement with nu-
merical (approximate) solutions of the Boussinesq equa-
tions; cf. Sec. V. We also study the relative importance
of the forcing terms. Volume forces are used to mimic the
boundary conditions, which in experiment drive convec-
tive turbulence by large-scale wind as well as by plumes
detaching from the boundary layers. Here we cannot con-
tribute additional arguments other than the plausibility
that the volume forces we use are a proper substitute for
the effects of real boundaries (wind, plumes, etc.). Thus
our results are under the proviso that this volume forcing
is a valid assumption.

There is a crossover wave number kg (Bolgiano scale)
indicating a change in the relative importance of the non-
linear terms describing kinetic and thermal flux in com-
parison to the buoyant coupling « g, g being the grav-
itational acceleration and 3 the thermal expansion coef-
ficient. kg and the corresponding length scale lp = kgl
have been introduced previously; cf. [6-8], by global di-
mensional arguments (comparing units). Recently L’vov
and Falkovich [11] showed that the stationary spectrum
of hydrodynamic thermal turbulence is defined by in-
fluxes Ps and Pg of two independent integrals of motion,
entropy S, and mechanical energy E. They estimated kp
for a case of mixed excitation with energy pumping Pg as
well as entropy extraction Ps caused by the environment,
K3 = (89)?PEP55 .

In the present paper we analyze the dynamical equa-
tions and boundary conditions for the Rayleigh-Bénard
convection. Emphasis is put on the role of the forcing of
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the thermal turbulence. In particular we estimate kp in
terms of the stirring mechanism and find it to be much
larger than L~!, where L is the external length, while in
various theoretical high-Ra-flow simulations [12,13] kp
seems to be of order L~!. This might explain why these
simulations find KO scaling while in the boundary driven
experiment BO scaling seems to prevail down to much
smaller scales. kg is found to be of the order of the in-
verse of the mixing layer size, or Il ~ l,.

II. DYNAMICAL EQUATIONS

The equations of motion for an incompressible (V-u =
0) fluid stirred by heating from below are commonly ac-
cepted to be the Navier-Stokes equation together with the
heat equation, both in Boussinesq approximation [8,16],

J

Byu;(x,t) = —u - Vu; — 8;p + Bg606i3 + vV2u; + fui,

(1
B0(x,t) = —u- VO + kV2 + fo. (2)

Here 8;... and 8;... denote 8.../0t and 0.../dz;,
u(x,t) = (u;) is the (Eulerian) velocity field, 6(x,t) the
temperature deviation from a mean value Tp, v and &
are the kinematic viscosity and thermal diffusivity, p is
the kinematic pressure deviation from g-r (physical pres-
sure divided by the constant density pg), and f, and fo
represent the stirring mechanisms instead of using the
proper boundary conditions. This substitution (volume
forces instead of boundary conditions) again is common
use; see, e.g., [9,17,18], [11-13]. But we think one has to
very carefully check how the forcings can properly mimic
the physical boundary conditions. We have in mind that
the f’s arise from the mean profiles, typically Uy - Vu; or
X 00.

In the wave-number representation the set of equa-
tions, henceforth called the Boussinesq equations, reads

Byus(k,t) = — ‘/dSkldakzFiﬂ(k, Ky, o) (Ku, £)uf (Ko, £)6(k + ki + ko) + Bg P ()0(k, t)

—szui(k,t) + fu,i(k7 t) )

®3)

8,0(k,t) = —ik; /d3k1d3k2u;‘(k1,t)e*(kz,t)é(k +k; + k) — kk20(k, t) + fo(k,t). (4)

T is the interaction vertex proportional to k P+, prop-
erly symmetrized where P is the transverse projector
(see, for example, [8]). The wave-number § functions are
due to the assumed translation invariance.

III. BALANCE EQUATIONS

Following [11] we now consider the balance equations
for energy and entropy corresponding to the Boussinesq
equations. Consider first the kinetic energy per unit mass
and volume,

Eyin = 271 /uz(x, t)yd3z )V = 2‘1/d3ka(k).

F,.(k) is the trace of the simultaneous second-order
velocity correlator after separation of the momentum
§ function 6(k + ki + kg). It is related to the one-
dimensional E;(k) and three-dimensional F3(k) kinetic-
energy spectrum by
Ei(k) = 4nk®E3(k), Es(k) = Fu.(k)/2.

Multiplying (3) by u}(k), adding the complex conjugate
equation, and averaging over the ensemble yields the bal-
ance equation

0Bs(k) | 9E(k)
ot ok

= BgReF,9(k) — vk?F, (k) + Puu(k) .
(5)

-

Here £(k) is the flux of kinetic energy in k space due to
the nonlinearity. It can be determined using the relation

0E(k
_6—(1_{2 = Im/Fijl(ka ki, ko) Fuuu,iji(k, ki, ko)
X(S(k +k; + k2)d3k1d3k2 , (6)

as is shown, e.g., in [8]. Fyyu,ji is the simultaneous
third-order velocity correlator. Fys in (5) denotes the
velocity-temperature correlator, which describes the ef-
fect of gravity g = ges, and also the heat flux through the
system. The last term in (5) is the trace of the velocity-
velocity forcing correlator

Pouij(k)6(k — k') = (us(k) fy ;(K)) .

A corresponding balance equation holds for the inten-
sity of the temperature fluctuations S(k) = 2mk?Fyy(k),
the definition of the temperature-temperature correlator
being quite analogous to Fy,(k). For 8 <« Tp, S(k) is
proportional to the entropy spectrum [10] since

/oo S(k)dk =21 /02(x, t)d3z/V
1]

describes (up to a factor) the entropy increase (per unit
mass and volume) due to the thermal fluctuations. Fol-
lowing [8] and [11] we introduce therefore, in analogy to
the flux of kinetic energy (6), the quantity N (k), which
is proportional to the entropy flux in three-dimensional
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k space and can be determined from

6./;/'1((1() =Im /kiFGBui (k, k,, kz)é(k +ki + k2)d3k1d3k2

with the third-order correlator 6(k—k’) Fygy, (k, k1,k2) =
(8(k)0(k1)ui(k2)). Equation (4) implies the balance

% aFget(k) ngl((k) = —kk?Fpo(K) + Poo(k).  (7)

This equation corresponds to (5) and contains the
temperature-temperature forcing correlator,

Poo(k)b(k — k') = (0(k) fg (k)) .

We shall use these equations after integrating over
a wave-number sphere of radius k, containing all large
scales from L to k~1. This d®k integration also averages
over the directions. It is assumed that the force densities
f, and fy are concentrated on the large scales of order
L and that we are interested in wave numbers k > L™1.
Equations (5) and (7) imply for the stationary case

E(k) = ﬂgH(k) + Py — eE(k) ) (8)
n(k) = ng - Es(k) . (9)

Here
e(k) = k? / E(k,Q)dQ, n(k) =k / N(k,Q)dQ  (10)
are the one-dimensional kinetic energy and entropy flux,

H(k) = /ok dky /dQ k2F,(kr, ) (11)

is the turbulent heat flux through the system by motions
of all eddies with wave numbers k; in the interval 0 <
k1 < k. The value

H = H(oo) = [k Fuslin) = [ SHus0000) (12

has the physical meaning of the total heat flux, averaged
over the volume. Next

k

en(k) = vk? / dky / 40 k2 (K1, ), (13)
0
k

es(k) = kk? / dk; / dQ k2 Fpe(k1,9), (14)
0

are the rates of dissipation of kinetic energy and entropy
by motions with k; < k. The values

3
€g =€g(00) =v d—Vm(u'Au),
3
es = es(00) = i dewAe), (15)

are the total dissipation rates. Since the forces are as-
sumed to have large scales only,
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d3z

k
[ Pui)i = Pu = [ TF (02,00,

k
[ Putrek =puu= [ £Z w0050,

are both independent of k. In Sec. VII we shall estimate
P,., and Pyg for the Rayleigh-Bénard experiment.

The heat flux H via buoyancy serves as an input in the
total-energy balance. This is closely related to the role
of the potential energy E,ot whose balance we consider
now

d3
Eyot = /—V'a—:ﬂgze(x)

is the potential energy per unit mass and volume. Its
time derivative, which due to stationarity is zero, depends
on 8;6(x,t), i.e., on the dynamical equation (2),

dEpot d3z
% = 0= ﬂg/ % 20:0(x,t)

=g [ £Z 129 - (w6) + 4ol 0]

3
B9H = Pus, Pus=—Pg [ 5F colx0) . (16)

This is an important equation relating the mean heat flux
through the system to the potential-energy input Pyg.

Now let us consider the total balance in the system. In
the limit £ — oo (k now much larger than the dissipation
wave number) Egs. (8) and (9) take the form

€5 = Pyy + Pug, €5 = Poo (17)
with the help of Egs. (11)-(16). We also take
into account that nonlinear terms (energy and entropy
fluxes) do not contribute after integration over the whole
k space. Note that the physical dimension of the
terms in the first of Eqs. (17) is [(length)/(time)]?
(time)~! =(length)? (time)~3 and differ from those in
the second one, which is (time)? (time)~!.

The thermal dissipation eg according to (17) is to be
supplied by the thermal forcing Pyg while eg = P, + Puo
dissipates the sum of input by kinetic P,, and thermal
stirring P, ; the latter can be described by the forcing fo
according to (16) or, equivalently, by the heat flux (12).

Now let us estimate the various terms in the balance
equations (8) and (9). Consider first the flux e(k) in (8)
which is determined by (6) and (10). Kraichnan [19] has
shown in Lagrangian-history-direct-interaction approxi-
mation that the integrals over k; and k3 in (6) converge.
Later on, Belinicher, L’vov, and Falkovich [20, 21] proved
that these integrals do indeed converge in each order of
the diagrammatic perturbation theory. Therefore, when
k is in the inertial subrange the main contribution to
these integrals occurs where k1 ~ ko ~ k. (As usual
equality in the sense of order of magnitude is indicated
by ~ instead of =.) Thus by power counting one finds
9E(k)/0k ~ k*F,,u(k). (The fourth k power originates
from the k; in T, k3 from d3k;.) Then Eq. (10) implies
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immediately that (k) ~ k7 Fy,u(k).

Next we consider the buoyancy contribution H (k) in
(8). The naive power-counting estimate for H(k) leads
to a wrong result because the main contribution to the
integral (11) occurs for k1 ~ 1/L. In order to find the
k dependence of H(k) let us take the complete k-space
integral in (11) and subtract the integral over the com-
plement of the & ball. This latter contributes mostly at
the lower bound k& and is evaluated by power counting.
The resulting total contribution is

BgH (k) — BgH ~ —Bgk3Fue(k) .

Quite analogously the thermal balance is treated. The
following balance equations result:

k7Fuuu(k) ~ —ﬂgksFuB(k) + PuO + Puu )
k7Fugg(k) ~ Pyg(k) .

(18)
(19)

In order to see the relative weight of the various terms in
the balance equations we evaluate them in a mean-field-
type style.

IV. ESTIMATE OF TRIPLE CORRELATORS
AND HEAT FLUX

To determine the triple correlators in terms of the ki-
netic and thermal spectra, i.e., in terms of F,,(k) and
Fyg(k), we use the equations of motion. Multiplying (1)
by u*(k) and remembering that 8, is of the order of the
turnover frequency on scale k

w(k) ~klu(z + k™) — u(z)]

(20)
~ kK3 Fyu (k) ~ k¥/2\/Fuu(k),
we obtain as an order of magnitude estimate
W(k)Fyu(k) ~ k*Fuuu (k) ,
(21)

w(k)Fgg(k) ~ k*Fuge(k) .

In (20) we have used the fact that it is the velocity dif-
ference which is responsible for the Lagrangean motion.
It is dominated by the Fourier amplitudes in the shell
k, since the larger scales are subtracted in the relative
velocity and the smaller scales do not contain significant
energy. From (21) and (20) the triple correlators can be
estimated as

Fuuu(k) ~ k_3/2Fuu(k)3/2 s
(22)

Fupa(k) ~ k™32 Fog(k)\/Fuu(k) .

Analogously, the cross correlation between 6 and us
can be expressed in terms of the spectral power of the
kinetic and thermal fluctuations. Note that a naive fac-
torization of Fyg(k) as v/ Fuv(k)Fee(k) would be wrong,
as can be seen, for example, in the simple case of a pas-
sive scalar (when 8 = 0) where F,9(k) = 0 because of
symmetry [11]. Bg is the coupling strength between the
temperature and velocity fields. Therefore the u36 cor-
relation should be proportional to some power of 8g. In
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order to evaluate this correlator we multiply the equation
(1) by 6(k) and after averaging obtain

w(k)Fyuo(k) ~ k*Fyus(k) + BgFoe(K) - (23)

Keeping on the right-hand-side (rhs) of (23) only the
term o (g but neglecting the nonlinear term and using
w(k) from (21) results in

Fuo(k) ~ —Bgk~5/2Foe(k)F. /2 (k) (24)

up to the sign, which is discussed later. The nonlin-
ear term in (23) can be taken into account by split-
ting F,,t(k) into double correlators analogously to (22).
Apparently, this factorization is ambiguous, namely

Fuuﬁ(k) ~ khs/ZFuu(k) V F@G(k or
Fuuo(k) ~ k™32 /Py (k) Fug (k) .

The first alternative must, however, be ruled out as can
be understood again by considering the case 8 = 0.
F,ut(k) has to vanish in this case. This fact is only con-
sistent with the second factorization (25). It is easy to
see now that k*F,,t(k) in (23) is of the same order as the
linear term w(k)Fy,e(k) [see Eq. (20)]. Hence the non-
linear term in the equation of motion does not invalidate
(up to the sign) the estimate leading to (24). These ap-
proximations for the triple and the cross correlators were
already stated by L’vov and Falkovich in [11], who argue
that the sign in (24) is negative.

Of course, the considerations in this section do not
constitute a proof. They are a plausible demonstration.
It should therefore be pointed out that the above results
find a far more stringent support by a consistent the-
ory of fully developed convective turbulence based on a
diagrammatic perturbative approach to the Boussinesq
equations (1) and (2) in terms of quasi-Lagrangean vari-
ables as put forward in [22].

To get a feeling for the quality of (22) and (24) we con-
sider the case of KO scaling. Then, Fy, (k) ~ Fgg(k) ~
k~11/3 [8]. The cross correlator F,g(k), which is respon-
sible for the heat flux, then behaves as F,q(k) ~ k~13/3,
according to (24). This is steeper than +/Fpg(k)Fyu (k).
It is well consistent with the approximate solution ob-
tained numerically in [12], where instead of —13/3 (=
—4.33) the exponent —4.52 was found. There is very fast
isotropization by eddy decay. The main contribution to
the heat current stems from the large scales. The triple
correlators according to (22) decay as k=7 as it has to be
in the case of KO scaling [8].

(25)

V. KO AND BO SPECTRA AS SOLUTIONS
OF THE BALANCE EQUATIONS

Now we have expressed all terms in the balance equa-
tions by only two correlators, the kinetic one F,, (k) and
the thermal one Fyg(k). This allows us to compare the
relative importance of the various contributions. Substi-
tuting (22) and (24) into (18) and (21) we obtain the
following balance equations
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K1/2F (k)2 ~ (B9)2k2 Foyuy () ™Y/ Fyo (k)
+Pug + Py 3 (26)

k'1/2 Fag (k) Fuu (k)2 ~ Py . (27)

Let us consider these balance equations (26) and (27) in
more detail. There are interesting limiting cases which
follow from these approximate and order-of-magnitude
balance equations.

If the total thermal input is small, Pyg ~ 0, the spectral
power Fyg(k) should be small too, according to (27), so
the buoyant (first) term on the rhs of (26) should be small
and k'Y/2F,, (k)3/2 ~ P,,. Thus there is constant energy
flux, ie., Fuu(k) ~ k~11/3, and KO is found. Taking
Fuu(k) ~ k1173 we get from (27) that also Fyg(k) ~
k~11/3 and from (24) that F,g(k) ~ k~13/3 as already
discussed.

If, on the other hand, Py is large, and so is Fge(k)
according to (27), the buoyant term in (26) can dominate
the velocity input P,g + P,,, and therefore

K12 Fy (k)22 ~ (Bg)2kY 2y (k) Y/ Fyg (k) .

Together with (27) this leads to Fy, (k) ~ k~21/5, Insert-
ing into (27) gives Fyg(k) ~ k~17/5 and finally using (24)
results in F,g(k) ~ k=195, These are the BO scalings.

Note that P, is the integral over all k of the buoyant
term kept here. Therefore, the buoyant term can domi-
nate Pyg + Py, only if it changes sign with k or if P, is
very small or even negative, which means a loss of kinetic
energy on the large scales.

It may be useful to summarize both limiting cases more
completely, i.e., including the relevant prefactors. First,
KO scaling,

Fuu(k) = K e23k11/3
Fge(k‘) = K9636§1/3k—11/3 R (28)
Foo(k) = K,oBgeseq 2k~13/3.

The constants K,,, Ky, and K,y are dimensionless. We
furthermore have used Egs. (16) and (17) to express Pyg,
P,., and H by the dissipation rates.

For BO scaling the correlators are

Fuu(k) = Bu(ﬂg)4/56§/5k—21/5,
Foo(k) = Bo(Bg)~%/5¢g *k~17/5, (29)
Fouo(k) = Bug(Bg)"/3e¥/k=19/5

Again, B,, By, and B,y are dimensionless constants.
Note that all correlators are expressed in terms of (g
and es powers. €g does not appear in BO, according to
the physical idea that the last two terms on the rhs of
(26) are small in comparison to the first term, represent-
ing buoyancy. KO scaling, instead, depends on €g, €g,
and fg.

The very possibility of realization of KO and BO spec-
tra depends on the signs of the terms in the balance equa-
tions (26) and (27) since the spectra are determined by
the direction of the respective conserved fluxes of me-
chanical energy and of temperature fluctuations, which
in turn are determined by the signs of the forcing terms
(Pus + Puy) and Pgg. According to the total-balance

equations (17) these signs are both positive. It corre-
sponds to the almost trivial physical picture that the
forcing introduces energy and temperature fluctuations
(negative entropy) into the system which are then dissi-
pated by viscosity and thermal conductivity.

Since Ppg > O the sign of the temperature fluctua-
tion flux n(k), which is the lhs of Eq. (27), is also pos-
itive. This agrees with the intuitive picture of an ini-
tially smooth temperature field produced by the large-
scale force fg(x,t) which is convoluted into increasingly
smaller structures by the action of the turbulent velocity
field.

The energy flux in the case of the BO spectrum, whose
power-law exponent is ¢, = 11/5, is expected to be posi-
tive as the following general argument shows: There are
two other known types of spectra. In both cases the di-
rection of the energy flux is known. One is the spectrum
of the velocity fluctuations in thermal equilibrium. It
has the exponent {, = —2 and the energy flux is zero
by definition. The other one is the KO spectrum. It has
¢u = 5/3 and a positive-energy flux, as it describes the
flow of energy from small to large wave numbers. Let us
consider now the direction of the flux as a function of the
spectral exponent. ¢, increases from —2 (thermal equilib-
rium), passes through 5/3 (KO), and reaches 11/5 (BO).
If one assumes that the corresponding fluxes change con-
tinuously and vanish only in the thermal equilibrium,
one concludes that the direction of the flux should be the
same in the BO-case as it is in the KO situation, i.e.,
positive.

In the two limiting cases KO and BO discussed above
either the forcing or the first term on the rhs of Eq. (26)
is dominant. Since both terms are positive they provide
an energy flux of the desired direction. Thus the negative
sign of the cross correlator F,g(k), which was arbitrarily
chosen in Eq. (24), is determined here by the require-
ment that the balance equation (26) shall describe the
BO spectrum. Another argument for F,(k) < 0 in the
inertial interval was given by L’vov and Falkovich in [10,
11].

1I‘he quantity 47k?F,(k) describes the k density of
the heat flux between the top and bottom plates car-
ried by eddies of typical size 1/k. Therefore, the above
considerations lead to the conclusion that in the iner-
tial interval heat is transported from the top to the
bottom plate. For unstable stratification this leads to
the remarkable situation of a countergradient heat flux
from the cold to the hot plate. Nevertheless, the to-
tal heat flux H = 4n [ k?F,¢(k) dk seems to be posi-
tive (or close to zero). Thus the function Fyg(k) has
to change sign at some k. near 1/L. So there are two
regions with different behavior of F,¢(k). In the pump-
ing range (k < k.« ~ 1/L) the heat flux is directed along
the mean temperature gradient as is commonly expected.
In the inertial subrange (k > ki) the direction of heat
flux is fully determined by the strong nonlinearities in
the system and is negative. Since the mean temperature
profile 8g(x) does not contribute in the equations of mo-
tion for u(k) and 6(k) in this k range a direction of heat
flux independent of the sign of the stratification is fully
compatible with the observations.
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VI. CROSSOVER SCALE Kp

In the general case where a mechanical forcing as well
as a thermal forcing is present a crossover from KO be-
havior to BO behavior can occur at a certain wave num-
ber kg, which we discuss now.

The two limiting cases in the balance equation (26)
have been that on the rhs either the first or the last two
terms are dominant. Since the buoyancy term depends on
k, its size varies with scale, while the input of mechanical
energy (equal to €g) is independent of k. In both limit-
ing cases, KO as well as BO, the buoyancy contribution
decreases more or less steeply with k. Using (28) or (29)
we obtain

k—4/3

k 3 )
mFee(k) ~ Bgk°Fye(k) ~ {k‘4/5,

2 KO )
(Bg) BO.
For sufficiently small k the buoyancy will thus always be
dominant, while for large k it will fade away. The limiting
case of BO scaling thus can show up for smaller & or larger
scales, while the large-k or small-scale behavior (but still
k in the inertial range) will be KO. The crossover between
both cases occurs if the buoyant term is of the order of
the kinetic forcing, i.e.,

(89)*k 2 Fy (k)2 Fgg(k) ~ €5 = Pug + Puu, -

This determines the crossover wave number kg. To ex-
press kg in terms of Pyy, P,,, and P,y we make use of
the full balance equations. The result is

ky ~ (89)%€X /€% ~ (B9)°Pgy/ (Puu + Pus)® . (30)

The corresponding length scale g = kgl reads
Ip ~ el te5®*(Bg)~%/2. (31)

These estimates coincide with the expressions found from
dimensional analysis [6-8], as far as the (g, €5, and €g
dependence is considered. The additional use of the bal-
ance equations, however, provides via Egs. (17) the rela-
tion with the input mechanism, represented by Py, Py,
and Pyg, as was also discussed in [11]. We shall estimate
kp in Sec. VII.

Clearly, for k < kp one expects BO scaling, and for k >
kp one should find KO behavior, provided kp is located
in the inertial range. This was the assumption in our
estimates of the various terms in the balance equations.
If kg is of the order of L~ or even less, there will be only
KO scaling; if kp is of the order of ! or more, there
will only be BO scaling, followed by the viscous range
with exponential decay of the correlators.

In the simulations [12,13] the rhs of (30) is of order
L—*, so no BO scaling can be expected. Experimentally
[1-4], the rhs of (30) seems to be larger; therefore BO
scaling might occur. We estimate the value of kg in the
Rayleigh-Bénard experiment in the following section.

VII. THE EXPERIMENTAL CROSSOVER SCALE

The most convenient possibility to estimate [p is to
express €g and eg directly in terms of the Nusselt and
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Rayleigh numbers. Such expressions have been derived
by Shraiman and Siggia [14]:

es =k (|V0|2) = kA2L™?Nu, (32)
eg =v(ul;) = k3L *PrRa(Nu—1). (33)

Here, A is the temperature difference between top and
bottom plate, Pr = v/k is the Prandtl number (near
1), and Nu is the dimensionless heat flux, the Nusselt
number (being large, so Nu — 1 ~ Nu). These useful
expressions (32) and (33) can be derived exactly from
the equations of motion together with the correct physi-
cal boundary conditions but without any explicit forcing,
i.e., fu = 0, fg =0.

Note that €5 and eg in the exact expressions (32) and
(33) denote the total volume average of the dissipation
rates, including the contribution of the boundary layers.
For the estimate of g according to (31) we need instead
the bulk values of €g and €g.

We assume that these bulk values are represented by
the total volume averages (32) and (33) to a sufficient
accuracy. One can check this by decomposing the total
averages into the sum of the contributions from the bulk
and the boundary layer. For eg the ratio of these two
terms is estimated as

N(Ac)zL—%BL
€sbul  \ 109 L N (ég)z//\_mi
€S,BL - o (A)z 2>‘BL A L
ABL L

o< Ra_2/7/Ra'2/7 ~0(1).

Here we used that the boundary layer thickness gy, is
of the order of the viscous length 107. Analogously, it
is assumed that also for e¢g the smaller bulk dissipation
rate and the smaller volume of the boundary layer com-
pensate.

If we then use Egs. (32) and (33) to estimate the
crossover length scale I of (31) we obtain

/L ~ Pr Y/4Ra~Y4Nul/2. (34)

The Ra dependence of the Nusselt number has been
derived in [2] using a boundary layer together with a
mixing layer theory. In [14] it was shown that one does
not necessarily need the notion of a mixing layer to obtain
the Nu-vs-Ra dependence,

Nuox RaP, B=0.290~2/7. (35)

In the L = 40 cm cell with aspect ratio 1/2 the prefactor
is 0.165+0.005; cf. [4]. The mixing layer thickness is
characterized by the property that if the plumes have
grown to this size [,,, they on average lose their contact to
the boundary layer and detach into the bulk of convective
turbulence. The scaling theory [2] leads to

Im/L o< Ra™7, ~y=0.146 ~1/7, (36)

the prefactor being 2 according to [4].
Inserting (35) into (34) gives

Ig/L o Ra~Y4+1/7 — Ra=3/28 (37)
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This —3/28 scaling of g with Ra was also obtained in
[9] from e ~ u3L~! (with u, ~ Ra¥7kL~1 according to
the scaling theory [2]) and eg according to (32). The Ra
dependence is rather weak, Ra~%1%7. In the range Ra =
108-1015, the hard turbulence regime, lg/L decreases by
a factor of 1/107%3/28 = 1/5.6 only. Beginning with the
onset of turbulence, namely, with the transition to a state
with spatial decorrelation at Ra = 5 x 10%, the crossover
length g shrinks by a factor of 1/10.

Clearly, I is less than the external scale L, decreasing
even with increasing Ra. But, clearly, also lp is larger
than the characteristic inner scale, which scales as

10n/L « Ra~%3%2 « Ra™%/%;

cf. Ref. [23]; the prefactor is 50 for the Rayleigh-Bénard
cell mentioned above. The same scaling exponent and a
prefactor of 180 is estimated in [4]. Comparing g from
(37) with the viscous cutoff length we obtain

lp/10n x Ra%?

increasing in the hard turbulence regime by a factor of
30. Therefore, for large Ra the scale g is less than L but
larger than 10n,

0n<lilp< L,

the only proviso being the unknown constant in Ip ac-
cording to (34) or (37). If it is large, g might still be
near L, and no BO scaling would occur. If it is small, Ip
might be near 107, and only BO (but no KO) scaling is
realized.

Since 107 shrinks much faster than lg, there might
be a crossover between lg and 10n. Then Ip < 107 for
moderately large Ra and g > 107 for very large Ra, so
a Kolmogorov range could develop, starting from some
intermediate Ra.

The width of the mixing layer [, scales almost with
the same power of Ra as lg; compare (36) and (37). It is

IB/lm o Ral/?®

which is compatible with g ~ [,,. If this can be con-
firmed including the prefactors one would have a surpris-
ing interpretation of the mixing length even in the bulk
of convective turbulence or, vice versa, another interpre-
tation of the mixing length as the crossover scale from
Bolgiano (on larger scales) to Kolmogorov (on smaller
scales) behavior.

The hard-I to hard-II transition, advanced in Ref. [4]
and explained by the onset of restrictions in the respon-
siveness of the probe due to its own boundary layer in
Ref. [23], might thus obtain a new aspect. According
to our discussion it could be the onset of a Kolmogorov
scaling range between the Bolgiano spectrum for smaller
w and the viscous range for larger w. This makes a new
experiment with a smaller probe even more exciting, as
it could clarify both, the probe effect as well as the true
spectral exponent for w > wp. We define wg, the Bol-
giano frequency, using the Taylor hypothesis,

wp = Uc/lp x kL ~2Ra®%/7*3/28  Ral%/28
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Clearly, wp increases slower with Ra (the exponent being
0.54) than the dissipative cutoff frequency wy < Ra®78;
see Ref. [23] or [4] for the experimental wg. Therefore the
experimental power spectra [4] do not necessarily confirm
the interpretation of the I-II transition as the onset of a
Kolmogorov scaling range developing between the Bol-
giano spectrum for smaller w and the viscous range. But
this might become more evident if the possible restric-
tions due to the probe size will be removed by diminish-
ing the probe size from presently 200 um to a sufficiently
smaller size; cf. [23]. If one measures wp in units of
kL~2Ra'/? as in Ref. [4], one gets

wB/nL_2Ra1/2 o Ral/28

In these units thus the crossover wp increases only (very)
slowly with Ra. In contrast, experimentally the high-
frequency reduction shows a decreasing onset, in agree-
ment with the interpretation by probe restrictions; see
[23]. But, as mentioned, this probe limitation might yet
hide the wp transition.

Let us remark, finally, that /g can of course also be
estimated from Eq. (30) using information about the
forcing mechanism. First,

Py ~ BgLA™! Py, (38)
from (16) and (z2fg);, ~ A(fs)y, where X is the width
of the forcing zone; also Psg = (6fa)y, ~ A(fs)y A/L.
Remember [ (fs(x)) d3z ~ (fo)xtop T (fo) A pot = 0- As-
suming that (38) represents also P,, + P,y one obtains
from (30)

(ksL)* ~ BgL™ A®P,2. (39)
Continuing the estimate of Pgg by (fs), ~ QA with the

large-scale frequency Q ~ UL~ ~ /BgAl,,L~! we find
from (39) that (kpL)* ~ L3A~21. The relevant width
of the forcing zone should be the mixing layer, so A\ ~ [,,,
and therefore

kgL ~ (L/ly)3* x Ra%/%®

as before; cf. (37).

To briefly summarize, our main conclusion is that in
the Rayleigh-Bénard experiment the crossover scale lp
from Bolgiano-Obukhov scaling on the larger scales to
Kolmogorov-Obukhov scaling on the smaller scales (but
both well within the nonlinear range) has to be expected
well within the inertial range, 10n < Iz < L. Even more
precisely, g behaves like the mixing layer scale l,, and
might coincide with it, leading to an interesting interpre-
tation of the length scale [,,. Our results are based on
an analysis of the equations of motion and on the exper-
imentally observed Ra dependence of the stirrings and
dissipations.
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